If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-112=0
a = 1; b = 12; c = -112;
Δ = b2-4ac
Δ = 122-4·1·(-112)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{37}}{2*1}=\frac{-12-4\sqrt{37}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{37}}{2*1}=\frac{-12+4\sqrt{37}}{2} $
| 12w+11=4 | | 3r+4+4=-10-3r | | h=22-h=0 | | -18-14v=-2(v+4) | | 3x-12/5=9 | | v-2=4v+13 | | 5n+4n=0 | | 1/5x=212 | | 3(2x+2)=-5(5x-5)+4x | | 8.6^2=4.3^2+x^2 | | 3(x/4+1/4)=2x-3 | | 2(5x+2)=-5(3x-2) | | 3x-4=x(1/2)+6 | | 2^2x=26 | | 4((-4x)=-16 | | 16/20=2x/4 | | 2/4=w-2/4 | | 7x-22=36 | | -5(x+1)-3=-38 | | x^2+6x=X) | | 2(x^2)-5x-3=0 | | 0.10(y-4)+0.14=0.08-0.6 | | 4(x-3)-16=-20 | | 16x^2-48+36=0 | | -8(5x-6)=-192 | | 8/3=9/w | | -18-7x=3x-3 | | 3s-6s=34.75 | | 7x+7/5=63 | | 6(2y-1)=4y-3+3y-8 | | 6^(3x+1)=1 | | -4x+4=15-3x |